quaterion.loss.triplet_loss module¶
- class TripletLoss(margin: float | None = 0.5, distance_metric_name: Distance | None = Distance.COSINE, mining: str | None = 'hard', soft: bool | None = False)[source]¶
Bases:
GroupLoss
Implements Triplet Loss as defined in https://arxiv.org/abs/1503.03832
It supports batch-all, batch-hard and batch-semihard strategies for online triplet mining.
- Parameters:
margin – Margin value to push negative examples apart.
distance_metric_name – Name of the distance function, e.g.,
Distance
.mining – Triplet mining strategy. One of “all”, “hard”, “semi_hard”.
soft – If True, use soft margin variant of Hard Triplet Loss. Ignored in all other cases.
- forward(embeddings: Tensor, groups: LongTensor) Tensor [source]¶
Calculates Triplet Loss with specified embeddings and labels.
- Parameters:
embeddings – shape: (batch_size, vector_length) - Batch of embeddings.
groups – shape: (batch_size,) - Batch of labels associated with embeddings
- Returns:
torch.Tensor – Scalar loss value.
- get_config_dict()[source]¶
Config used in saving and loading purposes.
Config object has to be JSON-serializable.
- Returns:
Dict[str, Any] – JSON-serializable dict of params
- xbm_loss(embeddings: Tensor, groups: LongTensor, memory_embeddings: Tensor, memory_groups: LongTensor) Tensor [source]¶
Implement XBM loss computation for this loss.
- Parameters:
embeddings – shape: (batch_size, vector_length) - Output embeddings from the encoder.
groups – shape: (batch_size,) - Group ids associated with embeddings.
memory_embeddings – shape: (memory_buffer_size, vector_length) - Embeddings stored in a ring buffer
memory_groups – shape: (memory_buffer_size,) - Groups ids associated with memory_embeddings
- Returns:
Tensor – zero-size tensor, XBM loss value.
- training: bool¶